Separation of inorganic isomers by thin-fayer chromatography

II. Octahedral geometric isomers

GEORGEB. KAUFFMAN, BARRYH. GUMP, GARYL. ANDERSON and BRIANJ. STEDJEE Department of Chemistry, California State University, Fresho, Fresmo, Calif. $937 \leqslant 0$ (U.S.A.) (Received October 14th, 1975)

Although thin-layer chromatography (TLC) has been applied mostly to the separation of organic and biological materials, recent years have seen its increased application to inorganic separations. Syntheses of coordination compounds frequently produce more than one isomer, and rapid, efficient, and reliable methods for separating the resulting mixtures are desirable. Therefore, the growing number of separations of isomeric complexes by TLC ${ }^{1-9}$ is especially welcome.

In a previous publication in this series*, we have applied silica gel G (Kensington Scientific, Oakiand, Calif., U.S.A.) to the TLC separation of six non-electrolytic geometric isomers of platinum(II), for two of which separation by column chromatography had proven unsuccessiful ${ }^{10}$. In an effort to prove the general applicability of the method, we have extended our studies to include geometric isomers of various metals with coordination number six. fnasmuch as we demonstrated in our first article that TLC separations can be carried out on a semi-quantitative preparative scale (with ca. 200 mg of total mixtures), all the separations reported here are strictly qualitative. In addition to using mixtures prepared from pure isomers, we also applied the method to materials that should theoretically exist in more than one isomeric form.

EXPERIMENTAL

Materials

Isomer samples were either prepared and characterized in this laboratory (designated GBK in Table I) or were kindly provided by the persons listed alphabetically under Acknowledgements (designated by initials in Table I). All solvents were C.P. or reagent grade. The adsorbent used was silica gel TLC sorbent (SilicAR TLC-7G or TLC-7F, Mallinckrodt, St. Louis, Mo., U.S.A.), which was generously furnished by the manufacturer. We are also indebred to Englehard Industries (Newark, N.I., U.S.A.) for experimental samples of platinum sponge.

Procedure

Microscope slides ($75 \times 25 \mathrm{~cm}$) were thoroughly cleaned with detergent, rinsed with distilled water, and coated with a slurry consisting of one part of adsorbent in
three parts of a $1: i(v / v)$ minture of methanol and redistilied methylene chloride. The plates were air-dried for $10-20 \mathrm{~min}$ and activated by drying for 1 h at 110° just prior to use. Isomers and mixtures were applied as saturated solutions in the appropriate solvent or solvent minture, and the plate was air-dried and developed by the ascending technique ${ }^{11}$. After air-drying the plates, the isomers were detected as intense yellowbrown spots with iodine vapor. Thiocyanate complexes could be visualized with iron(III) chiozide solution, and in the case of highly colozed compounds no visuaiization was required. Separated isomers were identified by comparison with R_{F} values obtained for the pure isomers when available or by mixed melting point measurements or other characterization techniques. Further details are given in previous articles ${ }^{\text {:10 }}$.

RESULTS AND DISCUSSION

The results obtained are summarized in Table I. The R_{F} values reported were reproducible to ± 0.03. Although many developing solvents and mixtures were evaluated, only the most successfui combinations, i.e., those resulting in maximum differences between R_{F} values and minimum tailing, are shown. The following samples, listed by type and number, were successfully separated: $\mathrm{M}_{A_{2}} \mathrm{~B}_{4}$: $1-3$ (partial); $\mathrm{M}(\mathrm{AA})_{2} \mathrm{~B}_{2}: 4,5$ (partial); $\mathrm{M}(A A)_{2} B C: 6,7,10 ; 8,9$, and 11 (partial); $\mathrm{M}(\mathrm{AB})_{2} \mathrm{C}_{2}: 12$ (partial) ; $\mathrm{MA}_{3} \mathrm{~B}_{3}: 13,14 ; \mathrm{MA}_{3} \mathrm{~B}_{2} \mathrm{C}: 19,20 ; \mathrm{M}(\mathrm{AA})(B C)_{2}: 23$ (partial); $\mathrm{M}(\mathrm{AB})_{3}$: $24-27 ; \mathrm{M}(\mathrm{AAA})(\mathrm{BBC}): 28$ (partial); $\mathrm{M}(\mathrm{AA}) \mathrm{B}_{2} \mathrm{C}_{2}: 29$. The remaining samples could not be separated. In many cases (samples $15-18,21$, and 22), unsuccessful separations do not necessarily imply failure; the materials chromatographed were only theoretically capable of existing in two isomeric forms. In fact, samples $15-17$ were later found to consist exclusively of the cis form ${ }^{26}$. The results obtained for samples $14-18,21$, and 22 agreed with those obtained by column chromatography ${ }^{57}$. Samples $1,2,14$, and 19 were also previously separated by column chromatography ${ }^{57}$. Sample 20 , which could not be separated by column chromatography because of limited solubility ${ }^{33}$, was separated completely by TLC.

In some cases, complete separations were precluded by isomerization (sample 3 , trans isomer stable only in the solid state ${ }^{14.39}$) or decomposition (sample 3, odor of isonitrile noticeable on dissolution; samples $8-11$, hydrolysis or aquation) known to occur. Samples 4,5,8-12, and 24-28 represent the first electrolytes that we have separated by either column chromatography or TLC, although we have separated cis$\left[\operatorname{Ir}\left(\mathrm{Et}_{2} \mathrm{~S}_{3} \mathrm{Cl}_{3}\right]\right.$ from trans $\left[\operatorname{Ir}\left(\mathrm{Et}_{2} \mathrm{~S}\right)_{4} \mathrm{Cl}_{2}\right]$-trans $-\left[\operatorname{Ir}\left(\mathrm{Et}_{2} \mathrm{~S}\right)_{2} \mathrm{Cl}_{4}\right]$ (originally believed to be trans-[Ir($\left.\left.\mathrm{Et}_{2} \mathrm{~S}\right)_{3} \mathrm{Cl}_{3}\right]^{35.40}$. Sample 28 was previously separated into three isomers by column chromarographyi7. It constitutes the first compound that we have separated into more than two isomers. For all separations obtained, R_{F} cis $<R_{F}$ trans, except for samples 6, 7, 12, and 29. For samples 6 and 7 Boucher's TLC results ${ }^{18}$ agree with ours.

In adidion to the isomers shown in Table I, separations were attempted with the following isomers (classified by type) but were unsuccessful for the reasons cired. $\mathrm{MA}_{2} \mathrm{~B}_{4}$: cis (blue-black)- and trans (blue)- $\mathrm{Rb}_{2}\left[\mathrm{FrCl}_{2} \mathrm{Br}_{4}\right]$, cis (pigeon blue)- and trans (blue) $-\mathrm{Cs}_{2}\left[\mathrm{OsI}_{2} \mathrm{Cl}_{4}\right]$, cis (orange)- and trans (yellow)- $\mathrm{Rb}_{2}\left[\mathrm{OsBr}_{2} \mathrm{Cl}_{4}\right]$ (WP) ${ }^{41}$-insolubility in suitable solvents, decomposition in the solvent (water); $\mathrm{M}(\mathrm{AA})_{2} \mathrm{~B}_{2}$: cis (dark brownish orange)- and trans (ight brownish orange)-[Cotn $\left(\mathrm{NO}_{2}\right)_{2} \mathrm{INO}_{2}$, cis
TABLEI
TLC OF LIEXACOORDINATE GEOMETRIC ISOMERS

No. Isomer	Source	Developings solvent	R_{F} cis	trans	λR_{r}	Type of sepuration
Type $M A_{2} B_{4}$						
 trans (lemon yellow) ris (bright yellow)	GBK ${ }^{12}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.00	0.56	0.56	Complete
$2 \quad\left[\mathrm{P}\left(\left(n-\mathrm{Bu}_{3} \mathrm{P}_{2}\right)_{2} \mathrm{Cl}_{4}\right]^{*}\right.$ trans (golden yellow) cis (greenish yellow)	$\mathrm{GBK}^{13, * *}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.00	0.90	0.90	Complete
$3\left[\mathrm{Fe}\left(\mathrm{NCC}_{6} \mathrm{H}_{4}-\mu-\mathrm{CH}_{3}\right)_{4} \mathrm{Cl}\right]$ frans (violet) cis (orange)	$\mathrm{FB}^{\text {l4 }}$	$\left(\mathrm{ClH}_{3}\right)_{2} \mathrm{CO}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 8)$	0.96	1.0	0.04	Partial (isomerization in solution)
Type $M(A A)_{2} B_{2}$						
$4 \mathrm{~K}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$ trans $\left(3 \mathrm{H}_{2} \mathrm{O}\right)$ (purple-pink) cis $\left(2 \mathrm{H}_{2} \mathrm{O}\right)$ (decp purple)	F.J ${ }^{15,16}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{HH}_{2} \mathrm{O}(1: 1)$	0.37	0.63	0.26	Complete
$5 \quad\left[\mathrm{Cren}_{2}(\mathrm{NCS})_{2}\right] \mathrm{SCN}$ trans ($2 \mathrm{H}_{2} \mathrm{O}$) (orange) cis (orange)	EK ${ }^{17}$	$\mathrm{CH}_{3} \mathrm{OH}$	0.66	0.92	0.26	Partial
Type $M(A A)_{2} B C$						
$\begin{aligned} & 6 \quad\left[\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{NO}_{2}\right) \mathrm{py}\right] \\ & \text { trans }(\text { brown }] \\ & \text { cis (rcd) }) \end{aligned}$	LJB^{18}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	0.05	0.20	Complete
$\begin{aligned} & \left.7 \mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{NO}_{2}\right)(4 \text { tetert-butylpyridine })\right] \\ & \text { trans (brown) } \\ & \text { cis (red) } \end{aligned}$	$\mathrm{LJB}^{\text {2 }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.52	0.32	0.20	Complate
$8\left[\mathrm{Coen}_{2}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right) \mathrm{Cl}_{3} \mathrm{Cl}_{2}\right.$ one form only (cis-trans mixture) (purple-pink)	SCC ${ }^{19}$	$\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ (9:1)	$0.32^{* * *}$	$0.50^{\star * *}$	0.24	Partial (considerable (ailing)

TABLE I (continued)

No. Asomer	Source	Developing solvent	R_{r}		$A R_{r}$	Type of separation
			cis	trans		
$9\left[\mathrm{Comn}_{2}\left(\mathrm{ENNH}_{2}\right) \mathrm{Cl}^{2}\right] \mathrm{Cl}_{2}$ one form only (cis-trams mixture) (purplc-red)	SCC ${ }^{19}$	EtOH-H2 $\mathrm{H}_{2}(9: 1)$	$0.00^{* * *}$	$0.48{ }^{* 4 *}$	0.48	Partial (considerable tailing)
$10\left[\mathrm{Coen}_{2}\left(1 \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}\right) \mathrm{Cl}_{3} \mathrm{Cl}_{2}\right.$ one form only (cis-trans mixture) (purple-pink)	$\mathrm{SCC}{ }^{20}$	EtOH-H $\mathrm{H}_{2} \mathrm{O}$ (9: 1)	$0.10^{* * *}$	$0.30^{* * *}$	0.20	Complete
$11\left[\mathrm{CoCn}_{2}\left(\right.\right.$ ison $\left.\left.\mathrm{C}_{3} \mathrm{I}_{7} \mathrm{NH}_{2}\right) \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$ one form only (cis-frams mixture) (pink-purple)	SCC ${ }^{20}$	$\mathrm{EtOH}-\mathrm{HI}_{2} \mathrm{O}(9: 1)$	$0.00^{* * *}$	0.51 ***	0.51	Partial (considerable tailing)
Type $M(A D)_{2} C_{2}$						
$12\left\{\mathrm{Cr}\{(+)(\cdot)-\mathrm{pn}\}_{2}(\mathrm{NCS})_{2}\right] \mathrm{SCN}$ trans ($2 . \mathrm{H}_{2} \mathrm{O}$) (ycllow-orange) ris (orange-pink)	EK ${ }^{17}$	$\mathrm{CH}_{3} \mathrm{OH}$	0.92	0.18	0.74	Partial (considerable tailing)
Type $\mathrm{MA}_{3} \mathrm{~B}_{3}$						
$13\left[\mathrm{Crpy}_{3} \mathrm{Cl}_{3}\right]$ one form only (cis-lrams mixture) (light green)	1 K^{21}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{ClH}_{2} \mathrm{Cl}_{2}(1: 1)$	$0.78^{* * *}$	0.95 ***	0.17	Complete
$14\left[\mathrm{Rhpy}_{3} \mathrm{Cl}_{3}\right]^{1}$ trans or mer ($1,2,6$) (yellow) cis or face ($1,2,3$) (red-orange)	$\begin{aligned} & \mathrm{H}-\mathrm{HS}^{22-24} \\ & \mathrm{GW}^{22-24} \end{aligned}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	0.05	0.91	0.89	Complete
$\begin{aligned} & 15 \\ & {\left[\mathrm{Ru}\left(\mathrm{Ei}_{2} \mathrm{~S}\right)_{3} \mathrm{Cl}_{3}\right]} \\ & \text { one form only (cis) (orange) } \end{aligned}$	JE[${ }^{25}$,26	CHCl_{3}	0.40	--	-	Nonc
$16 \quad\left[\mathrm{Rh}\left(\mathrm{Rt}_{2} \mathrm{~S}\right), \mathrm{Cl}_{3}\right]$ one form only (cis) (red-orange)	JEF ${ }^{25} 26$	CHCl_{3}	0.39	-	-	None
$17\left[\mathrm{Rlh}_{\left.\left(\mathrm{Kt}_{2} \mathrm{~S}\right)_{3} \mathrm{Br}_{3}\right]}\right.$ one form only (cis) (brown)	JEF ${ }^{25,26}$	CHCl_{3}	0.31	-	-	None
$18\left[\mathrm{Kh}\left(\mathrm{P}_{3} \mathrm{P}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ one form only (incompletelyshanacterized (oranperrex \qquad	BWM ${ }^{27,1}$	CHCl_{3}	0.82	-	-	None

19 [$\left.\mathrm{Ir}\left(\mathrm{Pl}_{3} \mathrm{P}_{3}\right)_{3} \mathrm{IlCl}_{2}\right]^{*}$ $u\left(\right.$ trans-Cl, mer-Ph ${ }_{3}{ }^{1}$) (yellow) $\mathrm{P}\left(\mathrm{cis}-\mathrm{Cl}, m e r-\mathrm{Ph} h_{3} \mathrm{P}\right)$ (pale yellow)	$L V^{2 B-30}$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CHCl}_{3}(9: 1)$	0.00	0.65	0.65	Complete
$20 \quad\left[\operatorname{lr}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{py}_{2} \mathrm{Cl}_{3}\right]$ trums ($\mathrm{H}_{2} \mathrm{O}$) (orangered) cis ($1 / \mathrm{H}_{2} \mathrm{O}$) (deep yellow)	MD ${ }^{31,32}$	CHCl_{3}	0.00	0.38	0.38	Complete
$\begin{aligned} & 21\left[\mathrm{Ir}\left(\mathrm{P}_{3} \mathrm{P}\right)_{3} \mathrm{H}_{2} \mathrm{Cl}\right] \\ & \text { one form only (white) } \end{aligned}$	BWM ${ }^{27}$	CHCl_{3}	0.57			None
Type $M A_{2} B_{2} C D$ 22. $\left[\mathrm{lr}\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{HCl}_{2}(\mathrm{CO})\right]\right.$ one form only (white)	BWM ${ }^{27}$	CHCl_{3}	0.78			None
Type M $(A A)(B C)_{2}$						
23 [Coen(glycinate) $)_{2}$] (a) trans(o) (reddish violet)	DWC ${ }^{3.3}$	$(\mathrm{CH})_{2} \mathrm{CO}_{\cdots} \mathrm{H}_{2} \mathrm{O}(1: 1)$				
(a) trams(o) (redaish violet)			(a) 0.55	(b) 0.70	0.15	Partial (tailing)
(b) β-cis(o) C_{1} (pink) (c) $(x-\operatorname{cis}(o)$ (bink)			(a) 0.71	(c) 0.71	0.00	None
(c) (6 -cis (o) (pink)			(b) 0.71	(c) 0.83	0.12	Partial (considerable
Type M(AB) ${ }^{\text {a }}$						tailing)
24 [Fe\{N-1-(2'-pyridyl). ethylidenenailine $\}_{3}$ ($\left(\mathrm{CHO}_{4}\right)_{2}$ one form only (cis-trans mixture) (dark violet)	$P K^{34}$	Cellosolve- $\mathrm{HCl}(9: 1$)	$0.48{ }^{\text {nn* }}$	0.71 " ${ }^{\text {n* }}$	0.23	Complete
25 [$\mathrm{Fe}\left\{\mathrm{N}-1 \mathrm{I}\left(2^{\prime}\right.\right.$-pyridyl)ethylidenc- -p phenylenediamine $\left.)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ one form only (cis-rrans mixture) (violet)	PK^{34}	Cellosolve $-\mathrm{HCl}(1: 1)$	0.51 ***	$1.00^{* * *}$	0.49	Complete
26 [$\mathrm{Fe}\left\{\mathrm{N}-1-\left(2^{\prime}-\right.\right.$ pyridyl). benzylidencaniline $\left.\}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ one form only (cis-rtrans mixture) (dark violet)	PK^{34}	Cellosolve-- $\mathrm{HCl}(7: 3$)	$0.66^{\text {n** }}$	$1.00^{* * *}$	0.3	Complete
$27 \mathrm{~L}-\left[\mathrm{Co}\{(-) \mathrm{pn}\}_{3}\right] \mathrm{Br}_{3}$ trims (reddish brown) cis (orange)	TEM 33,36	Dissolved in $\mathrm{H}_{2} \mathrm{O}$ Developed in $\mathrm{CH}_{3} \mathrm{OH}$	0.00	0.61	0.61	Complete

TABLE i (coninucd)
No. Isomer

-

* Separated previously by column chromatography ${ }^{31}$.
** These isomers have not been previously described.
*ha Since the simple provided was a mixture and since the pure isoners were not available for reference, it is not certain which spot is due to the cis form and which to the trans form. According to Tobent, there is no evidence for the presence of troms isomers in these preparations.

This compound is now believed to be a chlorine-bridged dimer such as
 (SK) ${ }^{22,43}$ - insolubility in suitable solvents, decomposition on acidification used to increase solubility in metnanol; cis (dull orange-yellow)- and trans (yellow)-[Ir(o- $\mathrm{C}_{6} \mathrm{H}_{4}-$ $\left.\left.\left\{\mathrm{As}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{2}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}(\mathrm{LVo})^{4}$-both forms give R_{F} values of 0.00 , possibly due to isomerization; $\mathrm{MA}_{3} \mathrm{~B}_{3}$: cis or fac ($1,2,3$) (white)- and trans or mer ($1,2,6$) (orange)$\left[\mathrm{Rh}\left(\mathrm{Et}_{3} \mathrm{P}\right)_{3} \mathrm{Cl}_{3}\right]_{\text {, cis or }}$ fac ($1,2,3$) (white)- and trans or mer ($1,2,6$) (pale yellow)-$\left[\mathrm{Ir}\left(n-\mathrm{Bu}_{2} \mathrm{PhP}\right)_{3} \mathrm{Cl}_{3}\right](\mathrm{SOG})^{45.59}$ - same R_{F} values in acetone; $\mathrm{M}(\mathrm{AB})_{3} ; \beta$ (cis or fac) (pink) (with $1 \mathrm{H}_{2} \mathrm{O}$)- and a (trans or mer) (vioiet)-[Co(glycinate) $], \beta$ (cis or fac) (pink)- and α (trans or mer) (violet)-[Co(alaninate) $\left.)_{3}\right]$, p (cis or fac) (pink) (with $2 \mathrm{H}_{2} \mathrm{O}$)- and α (trans or mer) (violet) (with $1 \mathrm{H}_{2} \mathrm{O}$)-[Co(leucinate) $]$ (EK) ${ }^{46}$ - soiuble only in water or slightly soluble in acetone, R_{F} values either 1.00 with tailing to origin or else 0.00 ; the first two isomer pairs have also been found inseparable by column chromatography ${ }^{38}$; cis or fac ($1,2,3$) (yellow-brown)- and trans or mer (1, 2, 6) (yellow-brown)$\left[\mathrm{Cr}(8 \text {-hydroxyquinolinate })_{3}\right](\mathrm{FU})^{47-49}$ - insolubility or limited solubility in suitabie solvents, spots failed to move in any solvent; M(AAA) : cis or fac (purple)- and trans $^{\text {f }}$ or mer (purple-black)- Na or $\mathrm{K}\left[\mathrm{Co}(\text { iminodiacetate })_{2}\right]$ (DWC) ${ }^{50,51}$ - insolubility in suitabie solvents, soluble only in aqueous acids which yielded only streaking on plates; M(AAA)(BBB): s-cis (brick red)-, u-cis (pink)-, and trans (brick red)-[Co(diethylenetriamine)(iminodiacetate)]ClO: (DWC) ${ }^{52}$ - same reasons as previous isomers; M(AAAA) $B_{2}: \beta-c i s(R R, S S)$ (violet)-, trans (RR, SS) (green)-, and trans (RS) (light green)-[Co(1, 4, 8, il-tetraazaundecane) $\left.\mathrm{Cl}_{2}\right] \mathrm{Cl}(\mathrm{MLT})^{5,54}$ - insolubility in suitable solvents, chromatography in acetone-water ($1: 1$) yielded streaks; Binuclear complex: $\operatorname{cis}\left(\mathrm{C}_{2 h} ; \mathrm{A}_{u}+2 \mathrm{~B}_{4}\right)$ (white)- and trans $\left(\mathrm{C}_{2 \mathrm{n}} ; \mathrm{A}_{u}+2 \mathrm{~B}_{u}\right)$ (yeilow)-[Ru(CO) $\mathrm{Cl}_{2} \mathrm{C}_{2}$ (FGAS) ${ }^{55}$ - possible isomerization in ethanol, similar R_{F} values for both isomers.

CONCLUSIONS

The use of TLC for the separation of isomeric complexes possesses a number of distinct advantages:
(1) By careful choice of a deveioping soivent system, a large difference in mobilities (R_{F} values) and consequently a sharp and complete separation can be attained. In the present study, an isomer pair (sample 20) previousiy found not amenable to column chromatography was successfully separated.
(2) In conjunction with other evidence, TLC behavior possesses some potential diagnostic value in structure proof: For most of the compounds investigated, the trans isomer was found to be more mobile, i.e., to possess a higher R_{F} value, than the cis isomer, in agreement with findings reported for electrolytic cobalt(III) complexes ${ }^{5}$. This greater mobility of the trans isomer, which would be predicted from its lower dipole moment, agrees with the results obtained by us from column chromatography ${ }^{10,33}$. Nevertheless, a number of exceptions to the general rule that the trans isomer is more mobile than the cis isomer are known ${ }^{6.9 .56}$, so conclusions about configuration should be drawn only with caution and should be supplemented with other data.
(3) The time required for TLC is, of course, much less than that needed for equivalent separations by column chromatography.
(4) With TLC, iodine vapor may be used as a sensitive detecting reagent, thus eliminatiag the necessity for specific spot tests ${ }^{10.33}$. We have found this reagent,
denoted as "universal" for organic compounds by Bobbitt", to be useful in detecting a variety of coordination compounds. Its sensitivity makes it of particular value in assessing purity or detecting solvent-induced isomerization; by its use, trace quantities of one isomer can be detected in the presence of large quantities of the other. For many colored coordination compounds no visualization is necessary.
(5) Although column chromatography is still quite advantageous for preparative separations, TIC is also adaptable for this purpose, as we have shown'. Furthermore, preliminary separations by TLC are convenient for rapidly determining the solvents and conditions to be used for larger-scale separations by column ciromatograpiny.

ACKNOWLEDGEMENTS

We gratefully acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society (Grant 1152-B), the National Science Foundation (Undergraduate Research Participation Program Grants GY 2607 and GY 9916), and the California State University, Fresno Research Committee, for support of this research. We are also indebted to Ralph R. Calder, Richard A. Houghten, Jr., and Al Gwilliams for experimental assistance. We also wish to thank the following persons, listed in alphabetical order, for kindly providing experimental samples of isomers: Flavio Bonati, Laurence J. Boucher, Michael I. Bruce, S. C. Chan, Dean W. Cooke, James Dabrowiak, the late Marcel Delépine, Jack E. Fergusson, Samuel O. Grim, František Jursik, Shinichi Kawaguchi, Hanako Kobayashi, Paul Krumholz, Eishin Kyuno, J. Ivan Legg, Thomas E. MacDermort, Bernard W. Malerbi, Robert C. Poller, W. Preetz, Hans-Herbert Schmidtke, F. G. A. Stone, Martin L. Tobe, F. Umland, Lauri Vaska, Luciano Volponi, and Geoffrey Wilkinson.

REFERENCES

1 H. Seiler, C. Biebricher and H. Enlenmeyer, Helv. Chim. Acta, 46 (1963) 2636.
2 M. B. Celep, S. R. Niketic, T. J. Janjić and V. N. Nikolić, Inorg. Chem., 6 (1967) 2063.
3 L. F. Druding and S. I. Shupack, J. Chrontatogr., 24 (1965) 491.
4 G. B. Kaufiman and B. W. Benson, Inorg. Chem., 6 (1967) 411.
5 i. F. Druding and R. B. Hagel, Anal. Chem., 38 (1968) 478.
6 D. T. Haworth and M. J. Zetmeisl, Separ. Sci., 3 (1968) 145.
7 F. Jursik, J. Ciromatogr., 35 (1968) 126.
8 J. L.. Swain and J. L. Sudmeier, Anal. Chem., 40 (1968) 418.
9 R. B. Hagel and L. E. Druding, Separ. Sci., 4 (1969) 89.
10 G. B. Kaufiman, R. P. Pinnell and I. T. Takahashi, Inorg. Chem., 1 (1962) 544.
11 J. M. Bobbitt, Thin-Layer Chromatography, Reinhold, New York, 1963.
12 G. R. Kaufiman, J. H. Tsai and L. T. Takahashi, Inorg. Syn., 8 (1966) 245.
13 G. B. Kaufiman and J.-F. Chen, unpublisned work (adapted and modified from 3 . Chatt, J. Chem. Soc., (1950) 2301).
14 L. Malatesta, A. Sacco and G. Fadca, Ami. Chim. (Rome). 43 (i953) 617.
15 A. King, Inarganic Preparctions, George Allen and Unwin, London, revised ed., 1950, p. 114.
16 G. B. Kaufimen and D. Faoro, inorg. Syn., 17 (1976) in press.
17 E. Kyuno, Report of the Japan Society for Scientific Fromotion, Sendai, (1962) 7.
18 L. J. Boucher and N. G. Paez, Inorg. Cftem., 9 (1970) 418.
19 S. C. Chan and E. Leh, I. Chem. Soc., A, (1955) 129.
20 S. C. Chan and F. Len, J. Chem. Soc., A, (1965) 134.

21 P. Pfeifier, Z. Anorg. Ailgem. Chem., 24 (1900) 282.
22 I. P. Colman and H. F. Holtzelaw, Jr., J. Amer. Chem. Soc., 80 (1958) 2054.
23 H.-H. Schmidtke, Z. Phys. Chem., $3 \div$ (1962) 295.
24 R. D. Gillard and G. Wikinson, J. Chem. Soc., (1964) 1224.
25 J. E. Fergusson, J. D. Karran and S. Sesvaratnam, J. Chem. Soc., (1965) 2627.
26 B. E. Aires, J. E. Fergusson, D. T. Howarth and J. M. Miller, J. Chem. Soc., A, (1971) 1144.
27 B. W. Malerbi, Platinum Metals Rev., 9 (1965) 47.
28 L. Vaska, f. Anter. Chem. Soc., 83 (1961) 756.
29 L. Vaska and J. W. Di Luzio, J. Anter. Chem. Soc., 84 (1962) 4989.
30 R. C. Taylor, J. F. Young and G. Wilkinson, Inorg. Chem., 5 (1966) 20.
31 M. Delépine, C.R. Acaji. Sci. Paris, 200 (1935) 1374.
32 M. Delépine, Ann. Chim. (Paris), 4 (1935) 271.
33 I. C. Dabrowiak, Dissertation, Western Michigan University, Kalamazoe, 1970; Diss. Abstr., Int. B, 31 (1970) 2535.
34 P. Krumhoiz, Inorg. Chem., 4 (1965) 609.
35 T. E. MacDermott, Inorg. Chim. Acta, 2 (1968) 81.
36 P. F. Crossing and M. R. Snow, J. Chem. Soc., Dalton Trant., (1972) 295.
37 J. I. Legs and D. W. Cooke, J. Amer. Chem. Soc., 89 (1967) 6854.
38 G. B. Kaufiman, G. L. Anderson and L. A. Teter, J. Chromatogr., 114 (1975) 465.
39 R. C. Taylor and W. D. Horrocks, Jr., Inorg. Chem., 3 (1964) 584.
40 G. B. Kauffman, J. H. Tsai, R. C. Fay and C. K. Jorgensen, Inorg. Chem., 2 (1963) 1233.
41 W. Preetz, Z. Anorg. Allgem. Chem., 348 (1566) 151.
42 H. Kawaguchi, N. Yano and S. Kawaguchi, Eull. Chem. Soc. Jap., 42 (1969) 136.
43 H. Kawaguchi and S. Kawaguchi, Bull. Chem. Soc. Jap., 43 (1970) 2103.
44 C. Panattoni, L. Sindellari and L. Volponi, Ric. Sci. Rena. Sez., 35 (1965) 1149.
15 S. O. Grim and R. A. Ference, J. Coord. Chern., 2 (1973) 225.
46 M. Mori, M. Shibata, E. Kyuno and M. Kanaya, Bufl. Chent. Soc. Jap., 34 (1961) 1837
47 F. Umland, G. H. Gudmundsson and K. Adam, Naturwissenschaften, 48 (1961) 49.
48 K. Adam und F. Umland, Z. Anorg. Allgem. Chem., 339 (1965) 20.
49 F. Umland and K. Adam, Z. Anorg. Allgem. Chem., 341 (1965) 308.
50 D. W. Cooke, Inorg. Chem., 5 (1966) 1141.
51 A. Uehara, E. Kyuno and R. Tsuchiya, Bull. Chem. Soc. Jap., 43 (1970) 1394.
52 J. I. Legg and D. W. Cooke, Inorg. Chem., 5 (1966) 594.
53 H. G. Hamilton, Jr. and M. D. Alexander, J. Amer. Chem. Soc., 89 (1967) 5065.
54 R. Niththyananthan and M. L. Tobe, Inorg. Chem., 8 (1969) 1589.
55 M. I. Bruce and F. G. A. Stone, J. Chem. Soc., (1967) 1238.
56 L. F. Druding and G. B. Kaufman, Coord. Chem. Rev., 3 (1968) 409.
57 R. C. Poller and D. L. B. Toley, J. Chem. Soc., A, (1967) 2035.
58 R. C. Foller, J. N. R. Ruddick, B. Taylor and D. E. B. Toley, J. Organomeral. Chem., 24 (1970) 341.

59 S. O. Grim and L. C. Satek, J. Caord. Chem., 3 (1974) 307.
60 M. L. Tobe, personal communication, 1975.

